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Flow simulation on moving boundary-�tted grids and
application to �uid–structure interaction problems
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SUMMARY

We present a method for the parallel numerical simulation of transient three-dimensional �uid–structure
interaction problems. Here, we consider the interaction of incompressible �ow in the �uid domain and
linear elastic deformation in the solid domain. The coupled problem is tackled by an approach based on
the classical alternating Schwarz method with non-overlapping subdomains, the subproblems are solved
alternatingly and the coupling conditions are realized via the exchange of boundary conditions. The
elasticity problem is solved by a standard linear �nite element method. A main issue is that the �ow
solver has to be able to handle time-dependent domains. To this end, we present a technique to solve
the incompressible Navier–Stokes equation in three-dimensional domains with moving boundaries. This
numerical method is a generalization of a �nite volume discretization using curvilinear coordinates to
time-dependent coordinate transformations. It corresponds to a discretization of the arbitrary Lagrangian–
Eulerian formulation of the Navier–Stokes equations. Here the grid velocity is treated in such a way
that the so-called Geometric Conservation Law is implicitly satis�ed. Altogether, our approach results
in a scheme which is an extension of the well-known MAC-method to a staggered mesh in moving
boundary-�tted coordinates which uses grid-dependent velocity components as the primary variables.
To validate our method, we present some numerical results which show that second-order convergence

in space is obtained on moving grids. Finally, we give the results of a fully coupled �uid–structure
interaction problem. It turns out that already a simple explicit coupling with one iteration of the Schwarz
method, i.e. one solution of the �uid problem and one solution of the elasticity problem per time
step, yields a convergent, simple, yet e�cient overall method for �uid–structure interaction problems.
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1. INTRODUCTION

In many applications of computational �uid dynamics the problem domain is not constant but
changes in time. Also its boundaries are moving. In particular, this is the case when interaction
e�ects between the �ow of a �uid and deformable structures are analysed. Problems of this
type include �ow through elastic pipes, for example in arteries or other blood vessels, moving
pistons or the sloshing of �uids in elastic containers.
Small deformations of linear-elastic type pose no problems to most �nite-element solvers.

However this is not the case for the solution of �ow problems. The reason is that structural
mechanics problems are mostly formulated in a Lagrangian setting for which movement of
the mesh together with the body under consideration is automatically obtained. A Lagrangian
formulation of the Navier–Stokes equations is however not suitable for mesh-based discretiza-
tion methods because of the complicated structure the ‘deformations’ of a �uid can exhibit.
Here rotations or shearing of the �uid can lead to immediate entangling of grid cells. There-
fore, special techniques for the treatment of �ow problems with moving boundaries have been
developed. Most existing methods are based on the Eulerian formulation of the Navier–Stokes
equations and compute the solution on �xed grids. Additional ‘markers’ or property functions
are used to describe the �uid domain. Examples are particle methods [1], the volume-of-�uid
method [2, 3] and level-set-techniques [4, 5]. However with regard to �uid–structure interac-
tion problems, these methods have some drawbacks. First, special techniques have to be used
to prevent numerical di�usion and thus the smearing out of the interface where the interaction
e�ects are localized. Second, the accurate prescription of boundary conditions is rather di�-
cult and depends on a precise reconstruction of the interface which is only implicitly given
in the above-mentioned Eulerian methods. But especially for the solution of �uid–structure
interaction problems, a sharp representation of the interface is necessary. Arbitrary Lagrangian–
Eulerian (ALE) methods [6, 7] provide the means to achieve this and at the same time avoid
the disadvantages of a pure Lagrangian method. They introduce a frame of reference which
is independent of both the �xed mesh of an Eulerian method and the particle-based reference
frame of a Lagrangian method. Thus, the inner nodes of the mesh do not have to move with
the local �ow speed. There is a certain freedom for the mesh movement, which can be used
to avoid large distortions or an entanglement of grid cells. However, in order to maintain
a conservative numerical scheme, the mesh movement has to satisfy an additional condition
known as the geometric conservation law [8, 9]. Altogether, ALE methods are well suited
for the solution of the �uid subproblem in a coupled �uid–structure interaction analysis.
The fully coupled �uid–structure interaction problem is modelled by �rst decomposing it

into the two subproblems of incompressible �uid �ow and linear elasticity. Both subproblems
are then solved separately in their respective domains. The interaction e�ects are modelled
by coupling conditions which for each subproblem are incorporated in the solution process
as boundary conditions on the moving interface. In particular, the �uid exerts a force on the
elastic solid which is prescribed as a stress boundary condition for the elasticity problem. In
turn, the in�uence of the elastic deformations of the solid on the �uid is given by the position
and the velocity of the moving boundary. Thus, in each time step the fully coupled interaction
problem is solved by an iterative method which corresponds to a block-Gauss–Seidel method
applied to the system of the coupled equations [10]. This approach belongs to the family of
the so-called partitioned or staggered algorithms, see References [11–13]. We will see that,
for the test cases presented in this article, already one iteration of the coupled block-system
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per time step is su�cient to obtain a convergent, yet e�cient method for the global coupled
system.
The remainder of this paper is organized as follows. In the next section we formulate

the coupled �uid–structure interaction problem composed of the subproblems for incompress-
ible �ow and linear elasticity. Then we discuss the solution process using the block-iterative
approach. In Section 3, our method for the solution of �ow problems in moving domains is
presented. We brie�y recall the most important properties of the basic �nite-volume discretiza-
tion as given in Reference [14]. Then we present a generalization to time-dependent grids.
In Section 4 we give numerical results. First we discuss the convergence behaviour of the
�ow solver. Then we present simulations of a �uid–structure interaction problem, where we
couple our �ow solver with the elasticity problem. The discussion is completed by concluding
remarks and an outlook to further developments.

2. THE FLUID–STRUCTURE INTERACTION PROBLEM

To set up a coupled �uid–structure interaction problem in a domain � ⊂ R3, we �rst decom-
pose � into the part of the domain which is �lled by the �uid and the part which is occupied
by the solid. To this end, we denote the �uid subdomain by �F and the solid subdomain by
�S where �F∩�S = ∅. The interface which separates the subdomains is given by �= ��F∩ ��S.
A schematic view of the problem under consideration is depicted in Figure 1. Both subdo-
mains and the interface are time-dependent, because the interface changes its position over
time due to the interaction e�ects. The �ow �eld in the domain �F(t) exerts a force onto
the interface �(t) which causes a deformation of the elastic structure �S(t). This deformation
changes the shape of the �uid domain which in turn in�uences the �ow itself.
In the �uid subdomain �F(t) we employ the Navier–Stokes equations in the ALE formu-

lation given by

d
dt

∫
�F(t)

�F d� +
∫
@�F(t)

�F(v− vg) · n dS =0 (1)

d
dt

∫
�F(t)

�Fv d� +
∫
@�F(t)

[�Fv(v− vg)− �F] · n dS =
∫
�F(t)

�Ff dS (2)

Here �F and v are the density and the velocity of the �uid, vg is the boundary velocity of the
volume �F(t), f are external volume forces acting on the �uid such as gravity and n is the
outward pointing unit normal on the boundary of �F(t). The quantity �F is the stress tensor,
which, for a viscous Newtonian �uid, is given by

�Fij=−p�ij + �
[
@vi
@xj

+
@vj
@xi

]
−2
3
�
[
@vk
@xk

]
�ij (3)

with dynamic viscosity � and hydrostatic pressure p. For incompressible �ows, the density
�F is constant in space and time. Then, the expression for the stress tensor simpli�es to

�Fij=−p�ij + �
[
@vi
@xj

+
@vj
@xi

]
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Figure 1. Schematic view of the �uid–structure interaction problem.

In the solid subdomain �S(t) the time-dependent Lam�e-equations

�S
@2u
@t2

−�	u−(�+ �)∇∇ · u=�Sb in �S(t) (4)

serve as the mathematical formulation of the elasticity problem. Here, the quantity u denotes
the displacement of the structure, � and � are the material-dependent Lam�e constants,§ �S is
the density of the solid material and b are external body forces acting on the structure. The
Cauchy stress tensor of the solid, which is later needed in the coupling conditions, is given
by

�Sij=Eijkl�kl

Here E denotes the fourth-order elasticity tensor which for a linear isotropic and homogeneous
material is speci�ed by the generalized Hooke’s law and depends only on � and �. The
quantity � represents the linearized strains. Note that Equation (4) is obtained by employing
the relations for linear stresses, strains and Hooke’s law in the general equations of motion,
see e.g. Reference [15].
The interaction of both subproblems is achieved by coupling conditions which state the

continuity of the velocities and stresses at the moving interface �(t). They are given by

v=
@u
@t

and �F · n=�S · n on �(t) (5)

For the prescription of further boundary conditions we proceed as follows: For each sub-
domain �i we subdivide the boundary @�i\� into �i;D and �i;N, i.e. @�i\� = �i;D ∪ �i;N.
Here i denotes by F or S either the �uid or solid phase, respectively. Furthermore, D denotes
the part of the boundary where Dirichlet conditions are applied, e.g. prescribed in�ow for the
�uid or �xed boundary parts for the solid, and N denotes the part of the boundary where
Neumann conditions are applied, e.g. an out�ow boundary for the �uid or a free boundary
part for the solid.

§The Lam�e constants can be computed from the more common elastic modulus E and the Poisson ratio � by the
formulas �=(E=2(1 + �)) and �=(�E=(1 + �)(1−2�)).

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 50:437–468



FLOW SIMULATION ON MOVING GRIDS 441

The algorithm which we use for the solution of the coupled problem treats the subproblems
in an alternating fashion. Here, for each time step, the solution of one subproblem enters the
other subproblem through the boundary conditions. This approach corresponds to an iterative
solution of the global (abstract) coupled block-system by a block-Gauss–Seidel-type method
in each time step.
For the solution of the elasticity subproblems we use the freely available package

tochnog [16]. The implementation of tochnog is based on the velocity-stress formulation
of the equations of motion. A standard linear �nite element method is employed for the
space discretization and the �rst-order in time systems are discretized using the implicit Euler
method. The software provides a BiCGStab solver¶ for the solution of the arising system of
linear equations. For further details on linear �nite elements in elasticity theory we refer the
reader to, e.g. References [17] or [18]. The �ow subproblems are solved by a method which
we will present in more detail in Section 3. For now, we assume that we are able to compute
the �ow �eld for time tn+1 from the �eld and data at time tn, the grid velocity and the new
�uid domain �n+1. We denote by V; P;U;�; Vg the vectors containing the discrete values of
the �uid velocity v, the pressure p, the displacements u, the nodes on the interface �(t) and
the mesh velocity vg, respectively. For Vn; Pn; Un and �n given, our approach in the (n+1)th
time step of the overall solution algorithm for the �uid–structure interaction problem reads as
follows:

1. Set 	=1 and for ’∈ {V; P;U;�; Vg} set ’n+1; 	−1 =’n.
2. Compute from Vn+1; 	−1 and Pn+1; 	−1 the discrete values of the forces fn+1; 	 on �n+1; 	−1

which the �uid exerts on the structure according to the continuity condition for the
stresses in (5).

3. Solve the elasticity subproblem (4) in �S using the forces fn+1; 	=�F ·n on the common
interface �n+1; 	−1 as Neumann boundary conditions according to (5).

4. Construct the mesh for the �uid domain �n+1F by updating the boundary nodes according
to the solution of the elasticity problem and then move the interior nodes accordingly.

5. Compute the grid velocity Vn+1; 	g of the boundary �n+1; 	 and prescribe the correspond-
ing Dirichlet boundary conditions for the �uid subproblem according to the continuity
condition for the velocities in (5).

6. Solve the �ow subproblem in �n+1; 	F with the algorithm described in Section 3.5.
7. If 	¡	max, increment 	 and return to step 2, else set ’n+1 =’n+1; 	 for all ’∈ {V; P;U;
�; Vg} and proceed with the next time step.

The 	-cycle of this algorithm is depicted in Figure 2.
In step three of the algorithm, an arbitrary method to update the inner nodes according to

the boundary movement can be chosen. The simplest way is to use trans�nite interpolation
to move the mesh. But also more elaborate methods to maintain the quality of the grid,
e.g. smoothing techniques based on elliptic equations, could be used. A necessary condition
here is that the grid velocity is computed from the mesh movement in order to satisfy the
so-called Geometric Conservation Law [8]. This will be explained in detail in Section 3.3.

¶In principle, a CG method could be used since in our case the system of linear equations is symmetric, but the
implementation of tochnog is not limited to linear elasticity.
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Coupling
f (V, P)

Solid problem
U (f)

Coupling
ΩF (U)

Flow problem
V,P (ΩF)

tn+1

tn

t γ

Figure 2. Coupling algorithm for one time step.

3. MOVING BOUNDARY-FITTED GRIDS

In this section we present a method to numerically solve the Navier–Stokes equations in
time-dependent domains. It is based on a discretization in curvilinear coordinates proposed
in Reference [14] which we generalize to time-dependent coordinate transformations. The
basic idea is that the actual mesh which covers the deformable physical domain is mapped
to a logical Cartesian grid which is �xed in time. The time derivative of this coordinate
transformation enters the equations as the mesh velocity. Thus, the method corresponds to a
discretization of the ALE formulation of the Navier–Stokes-equations as given in (1) and (2).

3.1. The coordinate transformation

Our general approach is based on a block-decomposition of the �uid domain �F(t), i.e. the
�uid domain is given by

�F(t)=
M⋃
k=1
�k(t) (6)

with disjoint subdomains �k(t). This allows later for a straightforward parallelization based
on the domain decomposition method. In this section we now describe the discretization for a
single subdomain �k(t). The coupling of the subdomains �k(t) which form a cover of �F(t)
is straightforward and will be later explained in Section 3.6.
To discretize the Navier–Stokes-equations in general moving domains we employ a formu-

lation which uses grid-oriented velocity components. Our approach is based on the method
described in Reference [14]. We also refer the reader to Reference [19] for a similar approach
in the context of isoparametric �nite elements. In the following we present our extension of
this method, which allows to handle time-dependent boundary-�tted grids. To this end, at
each point in time and for each subdomain �kt a coordinate transformation maps the logical
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Xk x(τ,Xk)

x(τ,ξ)

 ξ(t,x)

Figure 3. Transformation of the mesh for a single subdomain X k .

subdomain, which is represented by a Cartesian grid and denoted by X k , onto the deformed
subdomain in physical space, see Figure 3.
For better readability from now on we omit the subdomain index k, i.e. �t always represents

a single subdomain in physical space and X its matching logical domain.
To describe the basics of the discretization we need to introduce some notation. Consider

the time-dependent coordinate mapping

x(
; �) : [0; T ]×X → [0; T ]×�t ; �∈X; T ∈R+ (7)

with 
= t. The logical domain is given by X =[0; N1]× [0; N2]× [0; N3] ⊂ R3. For 06 n�¡N�;
n∈N and �=1; 2; 3, the centre of a unit cube Xj, i.e. a control volume in the logical space,
is given by the multi-index

j=(j1; j2; j3)= (n1 + 1
2 ; n2 +

1
2 ; n3 +

1
2)

If we denote by

e1 = (12 ; 0; 0); e2 = (0; 12 ; 0); e3 = (0; 0; 12 )

then the cell-face centres of Xj are given by j ± e�, the edge centres by j ± e� ± e
, and
j ± e1 ± e2 ± e3 denotes the vertices. In this section we denote by �; 
; 	 indices which are
cyclic in 1; 2; 3.
The mapping x(
; �) is now de�ned for the vertices of the unit cubes which build the

logical domain. It is extended to the whole domain by trilinear interpolation. Figure 4 shows
the mapping of a unit cube Xj onto a general hexahedral cell �j, which forms a control
volume in physical space.
We further require the mapping x(
; �) to be boundary-�tted, that is, x(@X )= @� holds and

�� is constant everywhere on @� for an adequate �∈ {1; 2; 3}. Furthermore, the Jacobian

J =det
(
@x�
@�


)
�


; �; 
=1; 2; 3

is assumed to be strictly positive, such that the inverse mapping �(t; x) exists and x(
; �)
preserves orientation.
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Figure 4. Notations for a control volume in logical and physical space.

The tangential base vectors are given by

a(�) =
@x
@��

; �=1; 2; 3 (8)

and are easily computed from the vertices of a control volume. For example, using the notation
xijkl= xi + xj + xk + xl, where xi; xj; xk ; xl denote the coordinates of four corner points of the
control volume, the tangential base vector a(1) in the centre of the cell is computed by
a(1) = 1

4 (x3478− x1256). Note that, since the mapping x is only piecewise de�ned, the tangential
base vector a(�) is not continuous at cell faces where �� is constant.
The normal base vectors are de�ned by

a(�) =∇��; �=1; 2; 3 (9)

Using the formula J = a(1) · (a(2) × a(3)) and the relation a(�) · a(
) = ��
 we obtain the so-called
weighted normal base vectors

Ja(�) = a(
) × a(	) (10)

In contrast to a(�) or J , the weighted normal base vectors Ja(�) are continuous at cell faces
with constant ��.
The weighted normal base vectors in the cell-face centres are computed by

Ja(1)j+e1 = s4378; Ja(2)j+e2 = s2673; Ja(3)j+e3 = s5876 (11)

where sijkl= 1
2(xj − xl)× (xk − xi). This expression is the average of the two weighted normal

vectors for the two parallelograms constructed by adjacent sides of the cell face. For the
computation of cell volumes, we use the formula (cf. Reference [14])

|�j|= 1
3(b1 · (s1265 + s4378) + b2 · (s1584 + s2673) + b3 · (s1432 + s8765)) (12)
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where the vectors bi are given by

b1 = 1
8(x3478 − x1256); b2 = 1

8(x2367 − x1458); b3 = 1
8(x5678 − x1234)

To avoid the well-known problem of pressure oscillations which can occur for projection
methods on collocated grids, we will use a staggered mesh for the discretization. Then, the
pressure and other scalar unknowns are stored at the cell centres and the velocity components
are stored at the centres of cell faces. The continuity of Ja(�)j+e� motivates the choice of the
weighted contravariant velocity components

V�j+e� = Ja
(�)
j+e� · v (13)

as the primary variables. Furthermore, the quantities V�j+e� have a physical meaning as the
volume �uxes through the corresponding cell face centres.
For the transformation of the di�erential operators into a form which allows a conservative

discretization, we need the basic identity

n∑
�=0

@
@��

(
J
@��
@x


)
=0; 
=0; 1; : : : ; n (14)

Using this identity (14) and the chain rule, the spatial derivative of a function f(x) transforms
in the following way:

@f
@x�

=
3∑

=1

@�

@x�

@f
@�


+ f
3∑

=1

1
J
@
@�


(
J
@�

@x�

)

=
3∑

=1

1
J
@
@�


(
J
@�

@x�
f
)

(15)

Note that the application of the chain rule alone does not result in an expression which can
be used as the basis for a conservative discretization, see, e.g. Reference [20].
The application of (15) to the divergence operator results in

∇xu=
3∑
�=1

@u�
@x�

=
∑
�; 


@�

@x�

@u�
@�


=
3∑

=1
a(
) · @u

@�


=
∑
�; 


1
J
@
@�


(
J
@�

@x�
u�

)
=

3∑

=1

1
J
@
@�


V 
 (16)

At every point in time we can now apply the transformation rules (15) and (16) with
respect to the spatial coordinates. However, the time derivative has to be transformed in the
same manner. To this end we associate the time variable with �0 and x0 in the logical and
the physical domain, respectively. From Equation (14) then follows for 
=0 the relation

0=
@
@

(J ) +

3∑
�=1

@
@��

(
J
@��
@t

)
=
@
@

(J )−

3∑
�=1

@
@��

(Ja(�) · vg) (17)
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where vg = @x=@
 denotes the grid velocity. The application of (17) to a time derivative
results in

@f
@t
=
@f
@

+

3∑
�=1

@f
@��

@��
@t

=
@f
@


−
3∑
�=1
(a(�) · vg) @f@��+

1
J
f
[
@
@

J −

3∑
�=1

@
��
(Ja(�) · vg)

]

=
1
J

(
@
@

(Jf)−

3∑
�=1

@
��
(Ja(�) · vg)

)
(18)

In Equations (17) and (18) products of the grid velocity and the weighted normal base vector
appear, therefore, analogous to (13), we de�ne the weighted contravariant components of the
grid velocity by

V�g = Ja
(�) · vg for �=1; 2; 3 (19)

3.2. Discretization of the momentum equation

For the discretization based on a �nite volume approach in logical coordinates we start out
with the momentum equation in its �xed-grid, i.e. Eulerian, formulation. After application of
(15) and (16) the momentum equation can be written as

@v
@t
+

3∑
�=1

1
J
@
@��

(V�v)+∇p−
3∑

�; 
=1
�
1
J
a(
)� e

(�) =f (20)

with the kinematic viscosity �= �=�∞, �∞ the constant density and

e(�) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

@v1
@x�

+
@v�
@x1

@v2
@x�

+
@v�
@x2

@v3
@x�

+
@v�
@x3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

For the spatial discretization of the terms in the momentum equation we use the methods as
described in Reference [14]. Due to the staggered mesh, Equation (20) is not integrated over
the control volumes �j, but, for each coordinate direction, the integration is carried out over
the control volumes with the cell centre given by j + e�, i.e. the original volume �j shifted
by e�, respectively. The gradients of both the pressure and the expressions e� in the viscous
term are handled by the so-called integration path method. Here, the gradient of a quantity
is integrated over curves through surrounding nodes and a small associated system of linear
equations is solved to obtain the discretized gradient. For the details, see Reference [21].
The convective term is handled by a simple hybrid scheme using a combination of �rst-order
upwind and second-order central di�erences. Here, the blending of �rst- and second-order
terms is controlled by the local mesh Peclet-number.
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Note from (11) and (13) that due to the staggered mesh the velocity components and the
weighted normal base vectors are de�ned only in the grid points xj+e� . For the evaluation
of these quantities in other locations we use linear interpolation. This procedure is su�cient
to guarantee that a constant velocity �eld is invariant under transformation to contravariant
components and vice versa, see Reference [14].
What remains is the discretization of the time derivative in (20). The application of (18)

yields

@v
@t
=
1
J
@
@

(Jv)−

3∑
�=1

1
J
@
@��

(V�g v) (21)

The �rst term on the right-hand side of (21) is integrated over the shifted control volume
�j+e� and then approximated by the midpoint rule. This results in∫

�j+e�

1
J
@Jv
@t
d�=

d
dt

∫
�j+e�

v d�≈ d
dt

|�j+e� |v (22)

The total time derivative d=dt in (22) is treated automatically by the projection method, which
is described later in Section 3.5. The second term of the right-hand side in (21) is combined
with the convective term in (20) to

3∑
�=1

1
J
@
@��

((V� − V�g )v) (23)

Expression (23) can be interpreted as a new convective velocity, i.e. the �ow velocity in
relation to the moving grid. This modi�ed convective term is discretized in the same manner
as the original convective term. We obtain

((V� − V�g )v)|j+2e�j + ((V
 − V
g )v)|j+e�+e
j+e�−e
 + ((V
	 − V 	g )v)|j+e�+e	j+e�−e	 (24)

The computation of the grid velocity Vg needed in (24) is the subject of the next section.

3.3. Discretization of the geometric conservation law

The system of conservation laws for momentum and mass balance (1) and (2) has to be
completed by the so-called geometric conservation law (GCL) which reads (cf. Reference [8])

d
dt

∫
�
d�−

∫
@�
vg · n dS=0 (25)

In Reference [9] the GCL is derived from the mass conservation equation (1) by setting the
�ow velocity to zero. This is motivated by the requirement that the mesh movement is not
allowed to have an e�ect on the �ow �eld. It is essential that the discretization satis�es the
GCL. In, e.g. Reference [22] it is shown that a violation of the GCL results in spurious
oscillations due to arti�cial mass sources and sinks. Furthermore, if the GCL is ful�lled, then
we can easily employ a standard projection method, because the equation for conservation of
mass (1) reduces to the well-known divergence-free constraint for the velocity �eld. This can
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be seen immediately by using (25) in (1):

d
dt

∫
�
d�−

∫
@�
vg · n dS︸ ︷︷ ︸

= 0

+
∫
@�
v · n dS=0 ⇒ ∇ · v=0 (26)

In References [9, 22] the GCL is used to compute the grid velocities from the grid node
positions at di�erent times. Thus, the GCL is automatically satis�ed by the discretization
scheme. Especially in three dimensions, this approach is appealing and will therefore be used
in our method. However, in order to directly recover the weighted contravariant components
of the grid velocity, it is convenient to look at the GCL in the following way: When we
transform the di�erential operators into the logical coordinates (
; �), we make use of the
basic identity (14) to achieve a conservative discretization. This algebraic identity now has
to be ful�lled on the discrete level as well. To this end, we integrate Equation (14) for 
=0
over a logical control volume Xj. This results in

0 =
∫
Xj

3∑
�=0

@
@��

(
J
@��
@x0

)
d�

=
∫
�j

1
J
@
@�0

J
@�0
@x0

dx+
∫
�j

1
J

3∑
�=1

@
@��

(
J
@��
@x0

)
dx (27)

With the relation @��
@x0
= − a(�)vg, x0 = t, �0 = 
 as in Section 3.1 and with (27) we obtain

0 =
∫
�j

1
J
@
@

J dx −

∫
�j

1
J

3∑
�=1

@
@��

(Ja(�) · vg) dx (28)

=
d
dt

∫
�j
dx −

∫
�j

3∑
�=1

1
J
@
@��

V �g dx (29)

=
d
dt

∫
�j
dx −

∫
�j

∇ · vg dx (30)

Thus we see that the GCL corresponds to a �nite volume discretization of the basic identity
(14). Furthermore, we can use Equation (29) as a rule to compute the weighted contravariant
components of the grid velocity as needed for the discretization of the convective terms (24).
To avoid further interpolation of the grid velocity, we discretize the GCL for the shifted control
volumes �j+e� ; �=1; 2; 3. Thus, we can compute the grid velocity directly at the points where
it is needed, namely in the cell face centres of the shifted volumes instead of the centred
ones. To this end, we consider Equation (29) for a shifted control volume �j+e� . We obtain

∫
�j+e�

3∑
i=1

1
J
@
@�i
V ig d�=

3∑
i=1

∫
Xj+e�

@
@�i
V ig d� (31)
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Figure 5. Calculation of the grid velocity from the node movement (two-dimensional case).

For the case i = � the integral is approximated by

∫ j�+1

j�

∫ j
+(1=2)

j
−(1=2)

∫ j	+(1=2)

j	−(1=2)

@
@��

V �g d�� d�
 d�	 (32)

=
∫ j
+(1=2)

j
−(1=2)

∫ j	+(1=2)

j	−(1=2)
V�g |j�+1j� d�
 d�	 ≈V�g |j+2e�j (33)

where continuity of V�g in xj+e� is used for the integration in �-direction and the midpoint rule
is used for the two remaining integrals. In a similar way we obtain for i = 
 (and analogous
for i = 	)

∫ j�+1

j�

∫ j
+(1=2)

j
−(1=2)

∫ j	+(1=2)

j	−(1=2)

@
@�


V 
g d�� d�
 d�	 (34)

=
∫ j�+1

j�

∫ j	+(1=2)

j	−(1=2)
V
g |j
+(1=2)j
−(1=2) d�� d�	 ≈V
g |j+e�+e
j+e�−e
 (35)

Altogether, this results in ∫
�j+e�

3∑
i=1

1
J
@
@�i
V ig d�≈

3∑
i=1
V ig|j+e�+eij+e�−ei (36)

In (36) the index � denotes the coordinate direction in which the control volume is shifted
by e�, the index i denotes the coordinate direction of the cell face location where the grid
velocity is evaluated, see Figure 5. This expression can be interpreted as the grid velocity of
the cell face centre in its normal direction weighted by the cell face area, which is analogous
to the �ow velocity. Now we split the change in volume given by d

dt

∫
�j+e�

d�, see (29),
into the six contributions which are given by the movements of the individual cell faces and
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approximate the time derivative by the �rst order Euler method, i.e.

1
	t
(|�n+1j+e� | − |�nj+e� |)=

1
	t

3∑
i=1
[(	�)j+e�+ei − (	�)j+e�−ei ] (37)

Then we compute the grid velocity by

V ig; j+e�+ei =
(	�)j+e�+ei

	t
; �=1; 2; 3; i = 1; 2; 3 (38)

The right-hand side in Equation (38) is evaluated by formula (12) for the computation of cell
volumes. The corner points of (	�)j+e�+ei in the case i= � are given by

1
2 (x

k
j+e�+e
+e	 + x

k
j+3e�+e
+e	);

1
2 (x

k
j+e�+e
−e	 + x

k
j+3e�+e
−e	)

1
2 (x

k
j+e�−e
+e	 + x

k
j+3e�−e
+e	);

1
2 (x

k
j+e�−e
−e	 + x

k
j+3e�−e
−e	)

(39)

where k ∈ {n; n+ 1}. In the case of i 
= �, the volume (	�)j+e�+ei is split into the two sub-
volumes (	�)j+ei and (	�)j+2e�+ei . The corner points of (	�)j+ei are given by

xkj+e�+ei+e
 ;
1
2 (x

k
j−e�+ei+e
 + x

k
j+e�+ei+e
); 
 
= i; �

xkj+e�+ei−e
 ;
1
2 (x

k
j−e�+ei−e
 + x

k
j+e�+ei−e
); 
 
= i; �

(40)

and the corner points of (	�)j+2e�+ei are given by

xkj+e�+ei+e
 ;
1
2 (x

k
j+e�+ei+e
 + x

k
j+3e�+ei+e
); 
 
= i; �

xkj+e�+ei−e
 ;
1
2 (x

k
j+e�+ei−e
 + x

k
j+3e�+ei−e
); 
 
= i; �

(41)

again with k ∈ {n; n+ 1}.

3.4. Discretization of the mass balance equation

For the discretization of the mass balance equation we integrate the divergence-free constraint
(26) over a control volume �j and employ the transformation rule (16) to obtain

0 =
∫
�j

∇ · v dx=
∫
�j

3∑
�=1

1
J
@
@��

V � dx=
3∑
�=1

∫
Xj

@
@��

V � d� (42)

=
3∑
�=1

∫ j1+(1=2)

j1−(1=2)

∫ j2+(1=2)

j2−(1=2)

∫ j3+(1=2)

j3−(1=2)

@
@��

V � d�3 d�2 d�1

≈
3∑
�=1
(V�j+e� − V�j−e�) (43)

Here, we have used the same approximations as in (36), applied to the case of the control
volume �j.
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Finally, we arrive at the following set of semi-discretized equations:

DV =0

d
dt
(Qv) +M (V� − V�g ; v) +QGp−QF =0

(44)

where D is the discrete divergence operator, G accounts for the discrete gradient, Q represents
multiplication with the volume |�|, and M denotes the di�erence of the discrete convective
and the discrete di�usive terms.

3.5. The extended projection method

For the solution of the coupled system of Equations (1) and (2) we employ a Chorin-type
projection method [23, 24] which basically consists of the following parts: In a �rst step, we
compute an auxiliary velocity �eld from the momentum equations (2), neglecting the pressure
gradient. This auxiliary velocity �eld will in general not satisfy the divergence-free constraint.
In a second step, we use the condition for the conservation of mass (1) to derive a Poisson-
like equation for the pressure. This equation has to be solved, usually by an iterative method.
The computed pressure is then used in a correction step to project the auxiliary velocity �eld
onto a divergence-free one. This well-known approach will now be generalized to the case of
moving grids.
To this end, we assume that the shape �n+1 of the �uid domain at time tn+1 is known.

Then the grid velocity Vg and the necessary grid-dependent base vectors
√
ga(�); n+1 can be

computed. In our test cases the domain �n+1 is either explicitly prescribed or computed as the
solution of the structural mechanic subproblem. Then, using the notation from the previous
section, the individual steps of the extended projection method for the moving-grid problem
read as follows: First we have to discretize the set of equations (44) in time. In the current
implementation we use the explicit Euler method for the velocities, which is convergent of �rst
order provided that appropriate CFL-conditions are satis�ed. The pressure is always evaluated
at the new time tn+1. The fully discretized system to be solved now reads

DVn+1 =DVn = 0 (45)

Qn+1vn+1 −Qnvn+	t[M (V�;n−V�;ng ; vn) +Qn+1Gn+1pn+1 −Qn+1Fn+1] = 0 (46)

The discrete momentum equation (46) is still vector-valued. By multiplication with the cor-
responding weighted contravariant base vector we obtain a scalar equation for each velocity
component. The intermediate velocity �eld is computed according to

V ∗=
Qn

Qn+1V
n −	t 1

Qn+1M (V
n − Vng )Vn +	t

Qn

Qn+1F
n (47)

Note that in Equation (47) the relation V�;∗=
√
ga(�); n · ṽ n+1 holds with the Cartesian com-

ponents ṽ n+1 of the intermediate velocity �eld. To obtain Ṽ =
√
ga(�); n+1 · ṽ n+1 from V ∗ we

change the basis by

Ṽ =TBn+1

Bn V ∗=Cn+1C−1
n V

∗ (48)

with Ct =
(√
ga(1); t ;

√
ga(2); t ;

√
ga(3); t

)T.
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Now we apply the discrete divergence operator to the relation

Ṽ − Vn+1 =	tGpn+1 (49)

and use the equation for mass balance (45) to obtain a linear system of equations for the
pressure

DGpn+1 =
1
	t
DṼ (50)

We then solve (50) by a preconditioned BiCGStab method. Here, faster iterative methods
such as algebraic multigrid can be employed as well, see e.g. References [25] or [26].
In the last step of the projection method the pressure is used to compute the divergence-free

velocity �eld according to

Vn+1 = Ṽ −	tGpn+1 (51)

To guarantee the convergence of this explicit discretization in time, the time step size must
be limited properly. In the case of non-vanishing grid velocity the CFL-condition for the
convective term reads (cf. Reference [9])

	t6 min
16�63;�j

|�j+e� |
|V�j+e� − V�g; j+e� |

(52)

3.6. Boundary conditions and parallelization issues

The spatial discretization for each subdomain has to be completed by boundary conditions.
This is necessary for parts of the boundary which coincide with the physical boundary as
well as for arti�cial inner boundaries between adjacent subdomains which arise due to the
block-decomposition of the physical domain. In both cases the implementation is based on
a ghost cell technique. The computational grid of a single subdomain is extended by one
layer of cells in each coordinate direction which is then used for the implementation of the
appropriate boundary condition. In the case of a physical boundary, normal velocity compo-
nents are directly set in the corresponding cell face centre whereas tangential components are
extrapolated to the ghost cell layer in such a way that the discretization stencils can be directly
applied. The boundary conditions for the �uid subproblem on the moving �uid–structure inter-
face are treated as inhomogeneous Dirichlet boundary conditions, where the boundary values
are computed from the movement of the boundary according to the GCL as described in
Section 3.3.
The additional ghost cell layer of each subdomain is also used to set the necessary boundary

values at arti�cial inner boundaries between subdomains. Here, the ghost cell values are
updated with the computed unknowns in the inner cell layer of the adjacent subdomain.
Since the domain decomposition is used for parallelization, the neighbouring subdomain can
reside on a di�erent processor. In this case a communication step between the corresponding
processors is involved. Copying of variables between subdomains is necessary

• once in each time step to exchange V and Ṽ ,
• for each matrix–vector product involving the application of the discrete pressure Poisson
operator in the BiCGStab solver,
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Figure 6. Exchange of data at boundaries, here shown for the basis transformation in 2D.

• for the basis transformation (48), see Figure 6.
All other computations can be performed independently for each single subdomain.

4. NUMERICAL RESULTS

In this section we present some numerical examples. We validate our proposed method for
moving grids on two test cases and show that the convergence for the discretization in space is
of second-order. Later we show the properties of our approach when applied to �uid–structure
interaction problems.

4.1. Examples for �ow on moving grids

We validate the proposed method and demonstrate that second-order convergence in space
is obtained for moving grids. It can also be seen that the discretization scheme ful�lls the
discrete GCL.

4.1.1. Movement of inner grid nodes. In the �rst test case we consider the �ow in a three-
dimensional channel with the dimensions 3× 1× 1 and show that an initially given velocity
pro�le is not disturbed by a prescribed movement of the inner grid nodes. The exact solution
is given by the parabolic velocity pro�le

v1(x1; x2; x3; t)=16 vmax x2(1−x2)x3(1−x3); v2 = 0; v3 = 0 (53)

with a constant pressure gradient of ∇p= − 1 and applied volume forces speci�ed by
f(x1; x2; x3; t)=32 vmax �(x3 − x23 + x2 − x22) +∇p (54)

The problem setting is completed by homogeneous Dirichlet no-slip boundary conditions at
all walls except at the in�ow and out�ow boundary, where the given parabolic velocity pro�le
and homogeneous Neumann boundary conditions are used, respectively. The initial data for
all simulations was a fully developed �ow pro�le from a previous computation on a static
uniform grid. The simulations were carried out with the values vmax =1 and �=0:01, which
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results in a Reynolds number Re= u∞L=� of about 44, based on the mean in�ow velocity
u∞ and the channel height L.
We performed simulations on three di�erent grids for this example. The main interest was

to study the convergence behaviour of our approach for a moving grid. To this end, the grid
is deformed from its original equidistant Cartesian con�guration by the movement of the inner
grid nodes during the simulation over a time interval of length T . Here, the displacement of
a point with position x at time t is prescribed by

disp(x; t)=

⎧⎨
⎩−1

2
d(t) cos

(
�x1 − �

2

)
+
1
2

for
1
2
6 x16

5
2

0 else
(55)

with

d(t)=
1
2
dmax

(
1− cos

(
2�
t − t0
T

))
; dmax = (0; 0:15; 0:2) (56)

Figure 7 shows a view inside the three-dimensional mesh at time T=2; i.e. when the maximum
deformation of the grid occurs.
The grid deformation was chosen in such a way that the predominant deformations are

orthogonal to the direction of the main �ow and not parallel to the main �ow, since the
solution is constant with respect to x1. For comparison, a reference calculation on the original
undeformed Cartesian grid and another reference calculation on the stationary, but maximally
deformed mesh con�guration of time T=2 were carried out. For all three simulations we
measured the error of the computed solution with respect to the exact solution given by (53)
in the grid-dependent norm

eL2 ; h :=

(∑
�j

|�j||v(xj)− vj|2
)1=2

(57)

Figure 7. View inside the mesh at time T=2 when maximum deformation occurs.
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Figure 8 shows the temporal development of eL2 ; h for all three grids (on the left) and the
divergence of the velocity �eld (for the moving grid calculation only, on the right side).
As expected, the uniform Cartesian grid gives the best approximation and thus exhibits the
smallest error. The approximation quality of the deformed �xed mesh of time T=2 is lower and
thus results in the upper error curve. The error of the moving mesh computation is bounded
by those two curves. This is to be expected, since the error cannot be lower than the error
on the undeformed mesh at any given point in time. On the other hand, the error of the
moving grid calculation should not be larger than that of the deformed mesh computation.
The computations show further that essentially the divergence of the velocity �eld, computed
by (42), and thus the mass balance is independent of the grid movement.
Table I shows the maximum error over the time interval [0; T ] of the moving grid calculation

for di�erent mesh resolutions and the corresponding numerical rate of convergence �. From
these results we clearly observe a convergence rate of second-order. All simulations for this
test case were carried out with the same time step size to minimize the in�uence of the
time discretization on the error measurement. The size of the time step was chosen such
that the CFL-condition for the �nest mesh in its fully deformed state was ful�lled. This
value was then used for all mesh resolutions. The mesh size for the coarsest mesh was
h=(hx; hy; hz)= (0:15; 0:1; 0:1).
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Figure 8. eL2 ; h of computed solution over time for moving, uniform �xed in time and deformed �xed
in time mesh (left), divergence of V for the moving grid (right).

Table I. Maximum error over time interval [0; T ] and numerical
rate of convergence for di�erent norms.

eL1 ; h �eL1 ; h e∞; h �e∞; h eL2 ; h �eL2 ; h

h 1:30−2 — 4:45−2 — 9:96−3 —
h=2 3:36−3 1.95 6:70−3 2.73 2:51−3 1.98
h=4 8:32−4 2.01 1:85−3 1.85 6:25−4 2.01
h=8 2:09−4 1.99 4:81−4 1.94 1:56−4 2.00
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4.1.2. Flow through a channel with a moving indentation. As a second test case we consider
the simulation of a �ow through a channel with a time-dependent indentation. This test has
�rst been analysed experimentally in Reference [27] and was later numerically studied in
References [28, 29]. The setting is sketched in Figure 9. The time-dependent indentation at
the channel’s bottom is given by

x2(t; x1)=

⎧⎪⎪⎨
⎪⎪⎩

(t) for 0¡x1¡a1

0:5
(t)(1− tanh(�(x1 − a2))) for a1¡x1¡a2

0 for x1¿a3

(58)

with �=4:14; a1 = 4H; a3 = 6:5H; a2 = 0:5(a1 + a3) and


(t)=0:5
max(1− cos(2�t∗)); t∗=(t − t0)=T
Here, H is the channel height, T is the length of the time interval, 
(t) is the size of the
channel indentation at time t and 
max =0:38H is the maximum indentation at normalized
time t∗=0:5.
The Reynolds number of the �uid based on the mean in�ow velocity and the channel

height is 507. The initial condition for the simulation was a fully developed parabolic �ow
pro�le. This pro�le is also prescribed as Dirichlet boundary condition at the in�ow boundary.
In Reference [29] two di�erent mesh resolutions were considered, a coarse mesh with 91× 20
control volumes and a �ner mesh with 221× 40 control volumes. It was experienced that
severe oscillations occur for the coarse grid computations without upwinding scheme, the
use of �rst-order upwinding however introduces excessive numerical di�usion in the discrete
solution. Therefore, we restrict ourself to the case of the �ne grid with a resolution of 221× 40
control volumes and employ pure second-order central di�erences for the discretization of the
convective term. The two-dimensionality of this test case is handled in our implementation
by employing periodic boundary conditions in the x3-direction.
Figure 10 shows the contours of the velocity component in the main �ow direction for suc-

cessive time values. Here, only the region of interest downstream of the indentation is shown.
Blue colour represents a velocity of 2.75m=s, red colour represents a value of −0:75m=s.
Altogether, the results show a good qualitative agreement with the results published in

Reference [29]. The velocity in the main �ow direction reaches its peak value of 2:6603m=s
at time t∗ = 0:4, which is roughly a value of 77:3% higher than the constant in�ow velocity
of 1:5m=s. The reference value in Reference [29] is given by 2:645m=s, which is 76:3%
higher than the in�ow value. After time t∗=0:5, when the maximum indentation occurs, the
�ow rate decreases, until it reaches approximately the initial state at t∗=1:0. Between t∗=0:2
and 0.3 a �rst eddy detaches from the channel wall immediately behind the indentation. This
is the beginning of a periodic evolution of eddies which form alternatingly at the upper and
lower channel wall. The distance between the eddies in the main �ow direction approximately
equals the height of the channel. An observation made in Reference [28] is the breaking-up
of the �rst eddy into two eddies at the upper channel wall. This �ow feature can also be seen
in our results, cf. Figure 10 for the time values t∗ from 0:5 up to 0:8.
The overall �ow behaviour is re�ected by the evolution of the wall shear stress �w =

�(@v1=@x3), which is shown in Figure 11 at the top and bottom channel walls for the dimen-
sionless time values t∗=0:5 (on the left) and t∗=0:7 (on the right). Here we also observe a
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β

l1 = 9.85 l2 = 18.0

H

a1 a2 a3x1=0

Figure 9. Channel with time-dependent indentation.

Figure 10. Contour of the v1 velocity component at consecutive times t∗ from 0.2 to 1.0.

good qualitative agreement with the results given in Reference [29]. Unfortunately no quan-
titative results are available but distinctive features of the plots con�rm the good agreement.
In particular positions along the channel at which peaks of the wall shear stress appear match
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Figure 11. Shear stress �w at the lower and upper channel wall
for times t∗=0:5 (left) and t∗=0:7 (right).

very well. Di�erences show only in the magnitude of the peaks. In our results the amplitude is
slightly underestimated. These di�erences can be attributed to the di�erent time discretization
schemes used in both studies. In Reference [29] it was observed that di�erent sizes of the
time step employed in the same numerical scheme lead to a di�erent prediction for the height
of the wall shear stress peaks.

4.1.3. Parallel e�ciency. In this section we present results regarding the parallel performance
of our �ow solver on moving grids. We used the setting of the testproblem of Section 4.1.1 to
calculate speedups and scaleups. The �uid domain is partitioned in subdomains as described
in Section 3.6 and each subdomain is mapped to a processor. For the scaleup calculations the
resolution of each subdomain was �xed at 64× 32× 32=65 536 mesh cells and the number of
subdomains was increased together with the number of used processors. For the speedups, the
�uid domain was resolved with 192× 96× 96=1769 472 mesh cells.‖ The domain was then
divided in an appropriate number of subdomains and distributed to the di�erent processors.
All computations were performed on Pentium4 Xeon 3.2GHz dual processor nodes each with
2GB main memory and MyrinetXP interconnect.
Since the scaling behaviour of the employed linear solver dominates the parallel e�ciency,

we �rst present the dependence of the implemented BiCGStab(l) (cf. Reference [30]) solver
on the mesh width h for two di�erent preconditioners, namely a diagonal scaling and the
lifting interpolet preconditioner presented in Reference [31].
In Table II the iteration numbers for a BiCGStabL(8) method are given for the two em-

ployed preconditioners. The iterations of the solver were stopped when the residual dropped
below 1e − 10. As expected, we see that the iteration numbers grow with order h when the
diagonal scaling is employed, whereas the iteration numbers of the lifting interpolet precon-
ditioned solver grow only as the square root of h.

‖This resolution was chosen such that the whole domain �ts into the memory of a single node.
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Table II. Iteration numbers of preconditioned BiCGStabL(8) method
on a single processor machine. Dependence on mesh size h.

1=h Lifting interpolet Diagonal scaling

8 40 48
16 56 96
32 64 184
64 80 384
128 112 744

Table III. Scaleup for example 1. Constant number of 65 536
mesh cells per processor. Executing times in seconds.

Processors 1st step First 10 steps

Iterations 72 504
1 tR 3.68 36.61

tS 3.59 25.18

Iterations 232 1552
8 tR 3.77 37.72

tS 15.53 104.57

Iterations 424 3088
64 tR 3.81 37.92

tS 29.44 214.51

In Table III the iteration numbers of the linear solver, the executing time in seconds for
the linear solver, denoted by tS, and the time for the parts of main loop excluding the solver,
denoted by tR, are shown. The same stopping criterion as above was used. In the �rst column
the respective values for the �rst time step and in the second column the accumulated values
for the �rst ten time steps of the moving grid method are given. In the optimal case the
executing time in seconds would be constant for each number of processors because the
problem size grows proportionally to the number of employed processors. However, this
is prevented by the h-dependence of the linear solver as well as the dependence of the
preconditioner on the number of subdomains. All other parts of the moving grid algorithm
show an optimal scaling behaviour which is expected. The executing time tR is constant per
time step and independent on the number of processors used.
In Table IV we present the analogue data for the case of the speedups. The global mesh

resolution was �xed at 1 769 472 cells and the number of used processors was increased.
Again we observe a perfect scaling behaviour for all parts of the algorithm subsumed by tR.
The dependence of the solver and in particular of the preconditioner on the number of subdo-
mains prevents an optimal parallel performance. However, for a larger number of subdomains
this e�ect diminishes. The number of iterations grows only moderately and therefore the ex-
ecuting time approaches a nearly linear behaviour with respect to the number of employed
processors.
The scaleup and speedup experiments show that the solution of the linear system for the

pressure is the part of our algorithm which gives room for improvement. In order to achieve
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Table IV. Speedup for example 1. Constant mesh with
192× 96× 96=1 769 472 cells. Executing times in seconds.
Processors 1st step First 10 steps

Iterations 112 808
1 tR 94.78 950.29

tS 156.01 1129.03

Iterations 136 928
2 tR 49.26 493.36

tS 120.60 826.01

Iterations 256 1704
4 tR 24.96 248.82

tS 114.43 762.48

Iterations 312 2112
8 tR 12.41 124.33

tS 69.46 470.61

Iterations 248 2160
16 tR 6.25 62.69

tS 26.52 231.39

Iterations 280 2392
32 tR 3.19 32.02

tS 15.51 132.71

Iterations 280 2544
64 tR 1.68 16.44

tS 8.16 74.18

optimal parallel performance multigrid methods or specialized block-preconditioners for do-
main decomposition methods could be employed, see for instance Reference [32].

4.2. Examples for �uid–structure interaction

In this section we present numerical examples of simulations performed with our algorithm
for the fully coupled �uid–structure interaction problem. To this end, we consider two test
problems. First, we are concerned with the �ow through a channel, where the movement of
the elastic top wall is enforced by applying a load vector which varies sinusoidal in time.
In the second example, the interaction behaviour between the elastic top wall without any
external forces and the �ow is studied. The common setting for both problems is sketched in
Figure 12.
The total length of the channel is Lx=3:5, the channel height is Lz = 0:75 and the width

is Ly=1:0. The �uid domain is decomposed into three subdomains, compare Figure 12. The
top wall of the middle �uid block (the grey shaded part of the top boundary in Figure 12)
represents the elastic interface where motion due to interaction e�ects can occur. All other
boundary parts are �xed in time. The thin elastic solid domain has a height of 0:05 and
the same width and length as the middle �uid block. At �1 = 0 a parabolic �ow pro�le is
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Figure 12. The general setting for the �uid–structure interaction problem.

prescribed, at �1 = �max homogeneous Neumann conditions are used. For the elastic part of
the boundary the interface conditions (5) are used. On all other walls no-slip conditions are
applied. Since the nodes of the �uid grid and the solid grid coincide at the interface, no
additional specialized interpolation procedures for the exchange of �uid and solid quantities
are required.
All the results in this section have been obtained with an iteration parameter 	=0 in the

solution algorithm (cf. Section 2). This results in a simple but e�cient approach for the
solution of a coupled problem since only one solution of each subproblem per time step is
required. The method corresponds to a weakly coupled approach which is known to work
well for �uid–structure interaction problems where the density of the solid material is larger
than the density of the �uid. This is for example the case in the �eld of aeroelasticity,
see, e.g. References [12] or [13].

4.2.1. Fluid–structure interaction governed by an external force. We now consider the
�uid–structure interaction problem, where the movement of the upper boundary is enforced by
an external load. The load is given by a force �eld which is oscillating sinusoidally in time.
The maximum load is applied at the point xload = (1:0; 0:5; 0:75) and is smoothly distributed
over a small region of three grid cells around xload. The material parameters for the solid
are chosen as follows: the elastic modulus is E=1:0e9, the Poisson ratio is �=0:29 and the
density is �S =1000. The maximum load value applied was 100. The Reynolds number for
the �ow based on the mean in�ow velocity, the channel height, the �uid density �F =1:0
and the kinematic viscosity of 0:001 is approximately 187:50. The mesh of the �uid domain
consists of (32+96+64)× 32× 32=196 608 control volumes, the elastic solid is discretized
with 96× 32× 4=11 776 eight-noded �nite elements.
Figure 13 shows the applied load versus time, the resulting displacement dcentre =

x3(t)−x3(0) measured at the centre of the interface as well as the total volume of the �uid
domain �F(t) (top row). In the bottom row of Figure 13 the rate of change of the �uid vol-
ume, the corresponding mass �ow at the in�ow and out�ow boundaries as well as the error
of the mass balance equation (1) is shown. The measured data shows the behaviour which
is expected from the equation for conservation of mass (1). When the rate of change of the
volume is zero, the in�ow and out�ow mass �uxes are balanced. In time intervals where the
volume shrinks or expands, the mass �ux at the out�ow boundary rises above or falls below
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Figure 13. Load, displacement of interface centre and volume of �uid domain �F(t) (top from left to
right), volume change of �F(t), mass �uxes and mass balance error (bottom from left to right).
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the constant �ux value at the in�ow boundary, respectively. Figure 14 shows the displacement
of the section of the top wall which forms the elastic interface. Figure 15 shows the vertical
velocity component on three slices in the �uid domain.
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Figure 15. Vertical velocity v3 in the middle �uid block.

4.2.2. Flow through a channel with an elastic wall. Finally we consider the case where only
the forces exerted by the �uid are acting on the elastic structure. The general setting is the
same as in the previous section, however this time no external load is applied. Furthermore,
the elastic modulus of the structure is set to a value of E=1e2. Thus the forces which the
�uid exerts on the interface result in a noticeable displacement.
First we address the issue of convergence with respect to the time step size 	t. To this

end we �x the mesh size h. All simulations in this section are performed on a spatial grid
with a resolution of 16× 16× 16 control volumes for the �rst �uid block, 32× 16× 16 control
volumes for the last block, 48× 16× 16 control volumes in the middle block and 48× 16× 2
control volumes for the solid. The time steps for the di�erent simulations were �xed at �ve
values from 1e − 2 to 6:25e − 4.
Figure 16 shows the volume of the �uid domain �F(t) over time for the di�erent time step

sizes used. It re�ects the dynamic response of the system. Since the initial condition is not
an equilibrium of the coupled system, the interaction forces between �uid and solid lead to
an oscillating behaviour with a period of about 19. The oscillations damp out over time and
will eventually lead to an equilibrated state.
Tables V and VI show numerical rates of convergence for simulation runs with di�erent

time step sizes on the mesh of �xed spatial resolution given above. Because the exact solution
is not known, we compute the numerical rate of convergence �	t by the formula

�	t =
log |�	t − �	t=2| − log |�	t=2 − �	t=4|

log 2
(59)
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Figure 16. Volume of the �uid domain �F(t) for simulations with di�erent time step sizes.

Table V. Numerical rate of convergence based on the mass �ux at the out�ow boundary, computed at
time t = 5:0, 15.0 and 32.0.

	t mO|t=5:0 �h|t = 5:0 mO|t=15:0 �h|t = 15:0 mO|t=32:0 �h|t = 32:0

1:00−2 0.1870821521 — 0.1893511121 — 0.1891208682 —
5:00−3 0.1870775564 — 0.1893638886 — 0.1891419918 —
2:50−3 0.1870750512 0.88180 0.1893697910 1.11410 0.1891544123 0.76613
1:25−3 0.1870737138 0.85997 0.1893724036 1.17583 0.1891601207 1.12155
6:25−4 0.1870730088 0.92601 0.1893735093 1.24061 0.1891627225 1.13359

Table VI. Numerical rate of convergence based on the domain volume, computed at
times t=9:8, 29.0 and 48.0.

	t |�F|t=9:8 �	t |t=9:8 |�F|t=29 �	t |t=29 |�F|t=48 �	t |t=48

1:00−2 2.632050812 — 2.631610186 — 2.631263961 —
5:00−3 2.632068180 — 2.631652283 — 2.631336935 —
2:50−3 2.632077938 0.83182 2.631671851 1.10520 2.631373272 1.00595
1:25−3 2.632083552 0.79750 2.631680339 1.20501 2.631389684 1.14668
6:25−4 2.632086924 0.73531 2.631685252 0.78877 2.631399299 0.77136

Here, 	t is the size of the time step. The rates in Table V were obtained for the quantity �
chosen as the mass �ux at the out�ow boundary of the �uid domain which is given by

mO =
∫
�out
v · vecn dS ≈ ∑

j+e�∈�out
V�j+e� (60)

The rates in Table VI are based on the quantity � chosen as the volume of the �uid domain,
which is given as the sum of the cell volumes, compare Equation (12). In both cases we
observe rates of convergence between 0.73 and 1.2, which roughly re�ects a convergence
rate of �rst-order. This is to be expected due to the Euler discretization in time used in both
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Figure 17. Mass �ux at the out�ow boundary, up to time t = 0:25 (left) and up to t = 40 (right).

subproblem solvers. Here the following remark is in order: Because the absolute values of
both, the mass �ow and the domain volume, are underestimated for computations with a larger
time step, the curves intersect in between the peaks due to their oscillating behaviour. In the
regions around these intersections convergence can of course not be measured in a meaningful
way. To this end we chose time instants near the peaks of the curves for our measurements
in Tables V and VI. For the mass �ux case we therefore selected the time instants t = 5, 15
and 32. The curve for the domain volume is shifted by a half period with respect to the mass
�ux. This can also be seen from the equation of mass balance (1). Therefore we selected the
time instants t = 9:8, 29.0 and 48.0.
Now we address convergence with respect to the mesh size h. Here, we have performed

simulations with four di�erent grid resolutions, starting from a coarse grid with 8× 8× 8
control volumes in the �rst �uid block, 24× 8× 8 control volumes in the middle �uid block,
16× 8× 8 in the third block and 24× 8× 1 elements for the solid. Each successive �ner level
is obtained by a uniform re�nement with a factor of two. The time step for all four simulations
was �xed at a value of 4:0e − 3, which was su�ciently small to satisfy the CFL condition
on the �nest mesh.
To measure the numerical convergence rate, we again employed Equation (59), but using

h instead of 	t. We selected the mass �ux at the out�ow boundary and the volume of the
�uid domain as the quantity �. Due to the nonlinear coupling of the subproblems the spatial
discretization error does not only results in an amplitude change for the computed quantities,
but also introduces a phase shift in time. This behaviour is shown for the mass �ux on the
right of Figure 17 and for the volume of the �uid domain on the left of Figure 18. This shift
hampers the estimation of a convergence rate for larger times. Therefore we performed our
measurements at a small time (t=0:2), where the shift is not yet too signi�cant. The results
for the measurements based on the mass �ux and the domain volume are given in Table VII
and VIII, respectively.
From Table VII we observe a convergence rate of two. The same order of convergence

was already shown in Section 4.1 for the �ow solver. Thus, our approach for the solution
of the coupled �uid–structure interaction problem seems to maintain the convergence rates of
the individual subproblem solvers.
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Figure 18. Volume of the �uid domain for simulations with di�erent mesh resolutions (left) and the
displacement in the centre of the interface (right).

Table VII. Numerical rate of convergence based on the mass �ux at the
out�ow boundary, computed at t=0:2.

h mO mO; h−mO; h=2 Ratio �h

h 0.190371715 — — —
h=2 0.188151765 2:21994927−3 — —
h=4 0.187598599 5:53165999−4 4.01317 2.00474
h=8 0.187459755 1:38843820−4 3.98408 1.99424

Table VIII. Numerical rate of convergence based on the volume of the
�uid domain, computed at t=0:2.

h |�F; h| |�F; h|−|�F; h=2| Ratio �h

h 2.625005403 — —
h=2 2.625006571 −1:1679−6 —
h=4 2.625007027 −4:5579−7 2.56230 1.35744
h=8 2.625007283 −2:5659−7 1.77630 0.82887

Note however that the theoretical understanding of the convergence rates of the overall
method is not completely clear. It is well known that the discrete pressure in Chorin’s projec-
tion method develops boundary layers with reduced convergence order [33–35]. Since pressure
values near the boundary enter the stress tensor and thus the coupling conditions (5) to the
solid part, it has to be expected that the convergence order of the overall method is reduced
as well. How this a�ects the convergence rates especially for larger time instants and for �ner
mesh sizes is not yet fully understood and needs further investigation.
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5. CONCLUSIONS AND OUTLOOK

In this paper we presented a numerical approach to the treatment of �uid–structure interaction
problems in three space dimensions. The coupling of the elasticity problem to the �uid �ow
problem was done via an alternating Schwarz algorithm. Here we employed a standard �nite
element method for the elasticity problem and a novel �nite volume discretization on moving
boundary-�tted grids. The proposed �nite volume scheme implicitly satis�es the geometric
conservation law and therefore ensures mass conservation.
The algorithm for the solution of the coupled problem requires only one solution of each

subproblem in each time step which results in an explicit and simple, but e�cient solution
strategy for �uid–structure interaction problems. In our experiments we observed a conver-
gence rate slightly lower than �rst-order with respect to time and roughly a convergence rate
of the order one for the domain volume and of the order two for the mass �ux for a fully
coupled problem. It is well known that the convergence rate of the pressure deteriorates for
a projection scheme in the boundary layer near the �uid–solid interface. How this in�uences
the convergence rate of the overall scheme needs further investigation.
Finally, it should be noted that the stability and convergence properties of explicit and

implicit coupling strategies for �uid–structure interaction are not yet fully understood. Explicit
coupling strategies so far proved to be a valuable tool in aeroelastic computations where the
density of the �uid is low compared to the density of the solid. In Reference [36] it was
reported that the stability of explicit coupled algorithms is also in�uenced by the geometry of
the domain and the material properties, in particular the involved densities and their ratios.
The study of these dependencies will be further work.
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